Findings on first investigation

<table>
<thead>
<tr>
<th></th>
<th>Total</th>
<th>Men</th>
<th>Women</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>nr</td>
<td>% of total</td>
<td>nr</td>
</tr>
<tr>
<td>No abnormalities</td>
<td>2360</td>
<td>48.3</td>
<td>858</td>
</tr>
<tr>
<td>Focal neuropathy</td>
<td>1931</td>
<td>39.5</td>
<td>907</td>
</tr>
<tr>
<td>Polynuropathy</td>
<td>443</td>
<td>9.1</td>
<td>281</td>
</tr>
<tr>
<td>Myopathy</td>
<td>78</td>
<td>1.6</td>
<td>34</td>
</tr>
<tr>
<td>Hereditary muscular dystrophy</td>
<td>62</td>
<td>1.3</td>
<td>34</td>
</tr>
<tr>
<td>Myasthenia</td>
<td>9</td>
<td>0.2</td>
<td>4</td>
</tr>
<tr>
<td>Spinal cord</td>
<td>2</td>
<td><0.1</td>
<td>1</td>
</tr>
<tr>
<td>Other</td>
<td>2</td>
<td><0.1</td>
<td>0</td>
</tr>
<tr>
<td>Total</td>
<td>4891</td>
<td></td>
<td>2129</td>
</tr>
</tbody>
</table>

EMG IN MYOPATHIES

Björn Falck, M.D., Ph.D.
Department of Clinical Neurophysiology
University Hospital
Uppsala, Sweden

Myopathies

- Muscle dystrophies
 - Hereditary progressive myopathies
 - Congenital myopathies
 - Heterogeneous group of myopathies with onset in the newborn
 - Distal myopathies
 - Inflammatory myopathies
 - Critical illness myopathy
 - Metabolic myopathies
 - Mitochondrial myopathies
 - Rhabdomyolysis
 - Drug induced myopathies

Site of the abnormality

- Muscle dystrophies
 - Dystrophinopathies
 - Duchenne dystrophy
 - Becker dystrophy
 - X-linked Xp21, mutation of dystrophin gene
 - Facio-Scapulo-humeral dystrophy
 - Limb-girdle dystrophies
 - Recessive and dominantly inhereted
 - Emery-Dreifuss dystrophy
 - Three different mutations
 - Myotonic dystrophy type 1 and 2

Muscle dystrophies

- Congenital myopathies
 - Central core
 - Nemaline myopathy
 - Centronuclear myopathy
 - Etc…
Distal myopathies
- Welander type
- Tibial muscular dystrophy (Udd)
- Mioshi myopathy
 - Dysferlinopathy

Inflammatory myopathies
- Inclusion body myositis (IBM)
- Dermatomyositis
- Polymyositis
 - Quite rare
 - Adults only

Mitochondrial myopathies
- MERFF – myoclonic epilepsy and ragged red fibers
- MELAS - mitochondrial encephalopathy, lactic acidosis and stroke-like episodes
- Kerns-Sayre
- PEO – progressive external ophthaloplegia
- MNGIE –myoneurogastrointestinal encephalopathy

Metabolic myopathies
- Type 2 glycogenosis – Pompe
- Type 5 glycogenosis – McArdle disease

Rhabdomyolysis
- Acute necrosis of muscles
- Triggered by drug or alcohol induced immobility
- A small number may have a hereditary metabolic disorder
- Swelling of muscles, weakness
- Myoglobinuria (urine dark)
- Outcome usually good

Diagnosis of neuromuscular disorders
- History
- Clinical examination
- Clinical chemistry
- Clinical genetics
- ENMG
- Muscle histology
- Imaging
Specialties involved in diagnosis

- Adult neurology
- Pediatric neurology
- Internal medicine
- Dermatology
- Rheumatology
- Clinical neurophysiology
- Neuropathology
- Clinical genetics
- Radiology
- Clinical chemistry
- Clinical physiology

History

- Weakness
 - Functional deficits
- Fatigue
- Pain
 - Rare in myopathies
 - Polymyositis, dermatomyositis sometimes
 - Dystrophia myotonica type 2
 - *Muscle pain without weakness is not myopathy*
- Age of onset
- Progression
- Family history

Clinical examination

- Inspection
 - Atrophy
 - Hypertrophy
 - Skin changes
- Muscle strength
- Tendon reflexes

Distribution of weakness

- Limb-girdle
 - Proximal weakness of arms and legs
 - Common in most myopathies
- Distal
 - Quite common, especially in the Nordic countries
 - Scapuloperoneal
 - Forearm flexors – quadriceps (IBM)
 - Oculo-pharyngeal
 - Neck extensors

Clinical chemistry

- Creatine kinase (CK)
 - >3-50 above the upper limit of normal
 - Mild abnormalities 2-3 x are not significant
 - Physical exercise elevates CK
 - In neuropathies 2-5 times elevated
- Aldolase, LD, ASAT, ALAT
 - No significant advantage over CK
- Specific metabolic tests
 - Lactate in mitochondrial disorders

DNA testing in myopathies

- Nucleotide repeats
 - Myotonic dystrophy type 1
 - DMPK gene trinucleotide repeat
 - Myotonic dystrophy type 2
 - ZNF-9 gene tetrancleotide repeat
 - Oculopharyngeal muscular dystrophy
- Deletions
 - Dystrophin
- Mitochondrial cytopathies
Role of EMG

- EMG used as a first line test
 - Is there an abnormality?
 - Normal EMG does not rule out myopathy
 - Differentiate between neuropathic and myopathic disorders
- In myopathies EMG is rarely specific
 - Limits diagnostic alternatives
 - IBM - very typical distribution of findings
- Some myopathies are rarely seen in the EMG lab
 - Diagnosis based on clinical findings and DNA testing
 - Myotonic dystrophy type 1
 - Duchenne dystrophy

Neurophysiological methods

- Neurography
- EMG
- SFEMG
- Decrement

Classic EMG features in myopathies

- Spontaneous activity
 - Fibrillation potentials indicate active myopathy
 - Complex repetitive discharges non-specific finding
- MUP analysis
 - Low amplitude, short duration
 - High amplitude, normal duration
 - Sometimes polyphasic
 - Increased jiggle
- Early recruitment
 - Motor units are weak and all units are recruited early

Usefulness of EMG findings

- Never pathognomonic
- Discriminate between myopathy and neuropathy
- Distribution of findings between muscles helpful
- Combination of all information often gives the diagnosis

Why should MUP analysis be used?

- Documentation
- Systematic approach to problems gives more detailed information
- Less biased than qualitative analysis
- Follow-up studies

Björn Falck
MUSCLE BIOPSY

Indications
- Differential diagnosis of myopathies
 - Is there a myopathy?
 - What type of myopathy?
- Diagnosis not possible using DNA analysis
 - Most Duchenne patients do not have biopsy
 - Myotonic dystrophy not required
- When clinical picture is clear biopsy is not necessary
 - Inclusion body myositis
 - Dermatomyositis

Types of biopsy
- Open biopsy
 - Large incision 4-5 cm
 - Significant discomfort
 - Easy to secure quality of biopsy material
- Needle biopsy
 - Bergström needle
 - Difficult to get good quality of material in atrophic muscles

Semi-open biopsy
- Introduced by KG Henriksson in 1970s in Linköping
- Local anesthesia
- 1 cm incision
- Alligator forceps
- 3-4 pieces with a diameter of 3-4 mm
- Well tolerated
- Can be repeated

Semi-open biopsy
- Done in association to EMG
- Muscles easily biopsied
 - M.vastus lateralis
 - M.deltoides
 - M.tibialis anterior
 - M.gastrocnemius
 - Paravertebral muscles
 - M.infraspinatus
 - M.biceps femoris

Tools

MUP analysis

Incision

Take biopsy from the muscle

Result

Beware!

- M. tibialis anterior
 - Deep peroneal nerve may be at risk!
 - Never take biopsy in the posterior direction (downwards)
 - Start laterally and move towards the tibial bone
- Very small babies
 - Can be done in 3-6 month old babies

Histology

- Ordinary hemotoxylin-eosin staining
- Enzymehistochemistry
- Immunohistochemistry
- Electronmicroscopy

Dermatomyositis - HE

Penfascicular atrophy and necrosis
MUP analysis

PM – NADH
Ring fibers, targetoid fibers, fiber size variation

IBM - COX negative fibers
Ragged-red fibers are cytochrome oxidase negative but succinate dehydrogenase positive (blue) in COX-SDH staining

M.vastus lateralis - Dystrophin

DM - electron microscopy
Undulating tubules

Example of histology in myopathy

Pathophysiology of myopathies
- Fiber necrosis
- Fiber atrophy
- Fiber splitting
- Hypertrophy
- Regeneration of muscle fibers from satellite cells
- Reinnervation of degenerated fibers
- Increase of connective tissue
MUP analysis

Myopathy

Distal myopathy – m.ext.dig

Facio-scapulo-humeral dystrophy, tib ant

Facio-scapulo-humeral dystrophy, tib ant

Myotonia congenita – Thomsen, Vastus lat
Myotonia congenita – Thomsen, vastus lateralis

Duchenne dystrophy – m.vast.lat.

Alpha sarcoglycanopathy

Björn Falck
Myotonic dystrophy - m.deltoides

DM2 - m.deltoides

Dermatomyositis

DM
- Idiopathic inflammatory myopathy with characteristic cutaneous manifestations
- Occurs in all ages
 - Children 4-15 years, even infants
- Incidence of PM+DM in Finland around 1/100000 (Oka et al 1988)

Heliotrope rash in DM
Skin changes over the hands

- Malaise, mild fever
- Skin rash often precedes weakness
- Proximal muscle weakness
- Weeks or months
- Myalgia and muscle tenderness
 - Children > adults
- Dysphagia in 25%
- Rarely severe weakness of respiratory muscles

DM – muscle weakness

<table>
<thead>
<tr>
<th>Skin changes over the hands</th>
<th>DM – muscle weakness</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malaise, mild fever</td>
<td></td>
</tr>
<tr>
<td>Skin rash often precedes weakness</td>
<td></td>
</tr>
<tr>
<td>Proximal muscle weakness</td>
<td></td>
</tr>
<tr>
<td>Weeks or months</td>
<td></td>
</tr>
<tr>
<td>Myalgia and muscle tenderness</td>
<td></td>
</tr>
<tr>
<td>Children > adults</td>
<td></td>
</tr>
<tr>
<td>Dysphagia in 25%</td>
<td></td>
</tr>
<tr>
<td>Rarely severe weakness of respiratory muscles</td>
<td></td>
</tr>
</tbody>
</table>

DM – associated manifestations

- Cardiac
 - Overt symptoms uncommon
 - ECG abnormalities common
- Pulmonary
 - Interstitial lung disease (ILD) in 10%
- Joints
 - Arthralgia without arthritis
 - Arthritis of small joints
 - Contractures
- Vascuilitis

DM - association with malignancy

- The rates of reported malignancies 6-60%
- Carefully designed controlled prospective studies have not been done

DM - association with malignancy (Sigurgeirsson et al, NEJM 1992;326:363-67)

<table>
<thead>
<tr>
<th>DM - association with malignancy</th>
<th>DM - temporal relation with malignancy</th>
</tr>
</thead>
</table>
| Risk for cancer in DM
 - 2.4 (1.6-3.6, 95% CI) in men
 - 3.4 (2.44-4.7, 95% CI) for women.
- The cancer mortality in DM
 - 3.8 (2.9-4.8 95% CI) times higher than the general population.
- Particularly ovarian carcinoma has been implicated, but any type of malignancy may be related with DM.

Risk for cancer in DM

<table>
<thead>
<tr>
<th>Risk for cancer in DM</th>
<th>DM - temporal relation with malignancy</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.4 (1.6-3.6, 95% CI) in men</td>
<td></td>
</tr>
<tr>
<td>3.4 (2.44-4.7, 95% CI) for women.</td>
<td></td>
</tr>
</tbody>
</table>

- The cancer mortality in DM
 - 3.8 (2.9-4.8 95% CI) times higher than the general population.
- Particularly ovarian carcinoma has been implicated, but any type of malignancy may be related with DM.
DM-treatment
- Prednisone
- Azathioprine, cyclophosphamide, methotrexate, cyclosporin
- IV IgG in adults
- Plasmapheresis
- Physiotherapy to prevent contractures in children
- Calcinosis (topical steroids, colchicine, may require surgery)

Course and prognosis
- In adults DM is usually chronic
- Considerable mortality even today, especially in patients with cancer
- In most children remission, withdrawal of medication can be anticipated

Dermatomyositis - pathogenesis
- B-cell mediated immunopathology against endothelial cells of small blood vessels
- Complement activation by antibody
- Reduced number of capillaries, microinfarcts and ischemia
- Antinuclear antibodies in 25-60%
- Factors initiating vascular damage not known

Childhood DM - pathogenesis
- 85% have the HLA-DQA1*0501 allele
- Maternal chimerism
- Prognosis is usually good
- Calcinosis of skin may be a problem

Polymyositis (PM)
- Muscle weakness proximal>distal
- Weeks to months
- Dysphagia
- No skin changes
- Myalgia in 20-30%, rarely chief complaint
- Ventilatory failure is uncommon

Polymyositis - clinical features
Polymyositis epidemiology
- Most patients > 20 years
- Rarely in children
 - In connection with connective tissue disorders

Polymyositis syndromes
- Idiopathic
- Graft versus host
- Collagen vascular disease
- Anti t-RNA antibodies (JO-1 antibodies)
- Signal recognition particle antibody
- MAS-antibody
- Drug induced (D-penicillamine)
- Malignancy (necrotic)

PM – associated manifestations
- Cardiac
 - Overt symptoms are not common
 - ECG abnormalities are common
- Pulmonary
 - Interstitial lung disease (ILD) in 10% (anti-Jo-1 antibodies)
- Joints
 - Arthralgia without arthritis frequent
- Vasculitis

PM - association with malignancies
(Sigurgeirsson et al, NEJM 1992;326:363-67)
- Risk for malignancy in PM
 - 1.8 (1.1-2.7, 95% CI)
- The mortality from cancer in PM
 - 0.9 (0.6-1.4, 95% CI)
- Rates due to cancer search in patients with polymyositis.

PM – temporal relation to cancer
(Sigurgeirsson et al, NEJM 1992;326:363-67)

![Bar chart showing temporal relation between polymyositis diagnosis and cancer diagnosis.](chart.png)

PM - pathogenesis
- CD8+T-cell mediated immunopathology against muscle fibers
- CD8+T-cells and macrophages surround non-necrotic muscle fibers, invade and destroy them
- Association with HLA-DR3, HLA-B8 and HLA-DRw52
Acute polymyositis - m. deltoideus

M. deltoideus

EMG in polymyositis

- Acute stage
 - Fibrillation potentials
 - Short, small potentials

- Remission
 - Less fibrillation potentials
 - Amplitude variable
 - Duration short or normal

Inclusion body myositis (IBM)
IBM - epidemiology

- Onset mostly > 50 years
- Men > women
- Prevalence 9/1 000 000
- Prevalence in the population > 50 years 35/1 000 000

IBM - weakness

- Evolves slowly
- Distinctive pattern
 - Quadriceps femoris
 - Finger and wrist flexors
 - Weakness often asymmetric
- Dysphagia in 30%
- Facial muscle weakness rare
- Extraocular muscles spared
- Tendon reflexes initially normal, patellar reflex lost

Distribution of weakness in IBM

IBM - treatment

- No treatment sustained effect
- Transient effect with steroids and IV IgG
- Some offer a six month trial with prednisone
- Steroids decrease inflammatory response but do not halt the progression of vacuoles

IBM - associated manifestations

- Peripheral nerves
 - Mild generalized polyneuropathy on ENMG
 - No subjective symptoms
- Autoimmune disorders
 - SLE, Sjögren’s sd, scleroderma, sarcoidosis in 15%
 - Diabetes mellitus?

IBM – course and prognosis

- Slowly progressive disorder
- Muscle strength decreases 10% per year
- Progression leads to significant disability
- Almost normal life expectancy
IBM - pathogenesis

- Virus
 - Myxovirus was initially implicated
- Immune mediated
 - T-cells similar PM
- Mitochondrial disorder
 - COX-negative fibers
- Abnormal aging
 - "Alzheimer characteristic proteins" (ubiquitin, beta-amyloid protein, apolipoprotein, prion protein) in the rimmed vacuoles
 - Apolipoprotein E 4 frequency increased in IMB
- Genetic factors (HLA-DR3 in 90%, DR52, B8)

Classical findings in myopathy

- Fibrillation potentials
 - Suggest muscle fibre damage
 - Correlate with CK
- Unstable MUPs
- MUPs
 - Short and small in amplitude
 - May be polyphasic
 - Large amplitude and normal duration
- Findings depend on disorder and stage of the disorder

The role of EMG today

- If clinical picture is clear in suspected genetic neuromuscular disorders – confirmation with DNA tests (myotonic dystrophy)
- If there are affected family members DNA test is preferable
- If the clinical picture is not clear EMG is helpful in narrowing the diagnostic alternatives
- EMG and MRI are helpful for choosing the right muscle for biopsy

The end